Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Bull Math Biol ; 86(5): 47, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546759

RESUMO

Drug dose response curves are ubiquitous in cancer biology, but these curves are often used to measure differential response in first-order effects: the effectiveness of increasing the cumulative dose delivered. In contrast, second-order effects (the variance of drug dose) are often ignored. Knowledge of second-order effects may improve the design of chemotherapy scheduling protocols, leading to improvements in tumor response without changing the total dose delivered. By considering treatment schedules with identical cumulative dose delivered, we characterize differential treatment outcomes resulting from high variance schedules (e.g. high dose, low dose) and low variance schedules (constant dose). We extend a previous framework used to quantify second-order effects, known as antifragility theory, to investigate the role of drug pharmacokinetics. Using a simple one-compartment model, we find that high variance schedules are effective for a wide range of cumulative dose values. Next, using a mouse-parameterized two-compartment model of 5-fluorouracil, we show that schedule viability depends on initial tumor volume. Finally, we illustrate the trade-off between tumor response and lean mass preservation. Mathematical modeling indicates that high variance dose schedules provide a potential path forward in mitigating the risk of chemotherapy-associated cachexia by preserving lean mass without sacrificing tumor response.


Assuntos
Caquexia , Conceitos Matemáticos , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica , Biologia , Modelos Animais de Doenças
2.
Front Immunol ; 15: 1323319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426105

RESUMO

Introduction: Metabolism plays a complex role in the evolution of cancerous tumors, including inducing a multifaceted effect on the immune system to aid immune escape. Immune escape is, by definition, a collective phenomenon by requiring the presence of two cell types interacting in close proximity: tumor and immune. The microenvironmental context of these interactions is influenced by the dynamic process of blood vessel growth and remodelling, creating heterogeneous patches of well-vascularized tumor or acidic niches. Methods: Here, we present a multiscale mathematical model that captures the phenotypic, vascular, microenvironmental, and spatial heterogeneity which shapes acid-mediated invasion and immune escape over a biologically-realistic time scale. The model explores several immune escape mechanisms such as i) acid inactivation of immune cells, ii) competition for glucose, and iii) inhibitory immune checkpoint receptor expression (PD-L1). We also explore the efficacy of anti-PD-L1 and sodium bicarbonate buffer agents for treatment. To aid in understanding immune escape as a collective cellular phenomenon, we define immune escape in the context of six collective phenotypes (termed "meta-phenotypes"): Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose. Results: Fomenting a stronger immune response leads to initial benefits (additional cytotoxicity), but this advantage is offset by increased cell turnover that leads to accelerated evolution and the emergence of aggressive phenotypes. This creates a bimodal therapy landscape: either the immune system should be maximized for complete cure, or kept in check to avoid rapid evolution of invasive cells. These constraints are dependent on heterogeneity in vascular context, microenvironmental acidification, and the strength of immune response. Discussion: This model helps to untangle the key constraints on evolutionary costs and benefits of three key phenotypic axes on tumor invasion and treatment: acid-resistance, glycolysis, and PD-L1 expression. The benefits of concomitant anti-PD-L1 and buffer treatments is a promising treatment strategy to limit the adverse effects of immune escape.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Neoplasias/genética , Neoplasias/patologia , Glucose
3.
Cancers (Basel) ; 16(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38254748

RESUMO

Adaptive therapy, an ecologically inspired approach to cancer treatment, aims to overcome resistance and reduce toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life instead of killing the maximum number of cancer cells. In preparation for a clinical trial, we used endocrine-resistant MCF7 breast cancer to stimulate second-line therapy and tested adaptive therapy using capecitabine, gemcitabine, or their combination in a mouse xenograft model. Dose modulation adaptive therapy with capecitabine alone increased survival time relative to MTD but not statistically significantly (HR = 0.22, 95% CI = 0.043-1.1, p = 0.065). However, when we alternated the drugs in both dose modulation (HR = 0.11, 95% CI = 0.024-0.55, p = 0.007) and intermittent adaptive therapies, the survival time was significantly increased compared to high-dose combination therapy (HR = 0.07, 95% CI = 0.013-0.42, p = 0.003). Overall, the survival time increased with reduced dose for both single drugs (p < 0.01) and combined drugs (p < 0.001), resulting in tumors with fewer proliferation cells (p = 0.0026) and more apoptotic cells (p = 0.045) compared to high-dose therapy. Adaptive therapy favors slower-growing tumors and shows promise in two-drug alternating regimens instead of being combined.

4.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37781632

RESUMO

Highly effective cancer therapies often face limitations due to acquired resistance and toxicity. Adaptive therapy, an ecologically inspired approach, seeks to control therapeutic resistance and minimize toxicity by leveraging competitive interactions between drug-sensitive and drug-resistant subclones, prioritizing patient survival and quality of life over maximum cell kill. In preparation for a clinical trial in breast cancer, we used large populations of MCF7 cells to rapidly generate endocrine-resistance breast cancer cell line. We then mimicked second line therapy in ER+ breast cancers by treating the endocrine-resistant MCF7 cells in a mouse xenograft model to test adaptive therapy with capecitabine, gemcitabine, or the combination of those two drugs. Dose-modulation adaptive therapy with capecitabine alone increased survival time relative to MTD, but not statistically significant (HR: 0.22, 95% CI 0.043- 1.1 P = 0.065). However, when we alternated the drugs in both dose modulation (HR = 0.11, 95% CI: 0.024 - 0.55, P = 0.007) and intermittent adaptive therapies significantly increased survival time compared to high dose combination therapy (HR = 0.07, 95% CI: 0.013 - 0.42; P = 0.003). Overall, survival time increased with reduced dose for both single drugs (P < 0.01) and combined drugs (P < 0.001). Adaptive therapy protocols resulted in tumors with lower proportions of proliferating cells (P = 0.0026) and more apoptotic cells (P = 0.045). The results show that Adaptive therapy outperforms high-dose therapy in controlling endocrine-resistant breast cancer, favoring slower-growing tumors, and showing promise in two-drug alternating regimens.

5.
Nat Commun ; 14(1): 4502, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495577

RESUMO

Interest in spatial omics is on the rise, but generation of highly multiplexed images remains challenging, due to cost, expertise, methodical constraints, and access to technology. An alternative approach is to register collections of whole slide images (WSI), generating spatially aligned datasets. WSI registration is a two-part problem, the first being the alignment itself and the second the application of transformations to huge multi-gigapixel images. To address both challenges, we developed Virtual Alignment of pathoLogy Image Series (VALIS), software which enables generation of highly multiplexed images by aligning any number of brightfield and/or immunofluorescent WSI, the results of which can be saved in the ome.tiff format. Benchmarking using publicly available datasets indicates VALIS provides state-of-the-art accuracy in WSI registration and 3D reconstruction. Leveraging existing open-source software tools, VALIS is written in Python, providing a free, fast, scalable, robust, and easy-to-use pipeline for registering multi-gigapixel WSI, facilitating downstream spatial analyses.


Assuntos
Microscopia , Software , Microscopia/métodos , Tecnologia
7.
Cancer Res ; 83(16): 2775-2789, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37205789

RESUMO

Adaptive therapies that alternate between drug applications and drug-free vacations can exploit competition between sensitive and resistant cells to maximize the time to progression. However, optimal dosing schedules depend on the properties of metastases, which are often not directly measurable in clinical practice. Here, we proposed a framework for estimating features of metastases through tumor response dynamics during the first adaptive therapy treatment cycle. Longitudinal prostate-specific antigen (PSA) levels in 16 patients with metastatic castration-resistant prostate cancer undergoing adaptive androgen deprivation treatment were analyzed to investigate relationships between cycle dynamics and clinical variables such as Gleason score, the change in the number of metastases over a cycle, and the total number of cycles over the course of treatment. The first cycle of adaptive therapy, which consists of a response period (applying therapy until 50% PSA reduction), and a regrowth period (removing treatment until reaching initial PSA levels), delineated several features of the computational metastatic system: larger metastases had longer cycles; a higher proportion of drug-resistant cells slowed the cycles; and a faster cell turnover rate sped up drug response time and slowed regrowth time. The number of metastases did not affect cycle times, as response dynamics were dominated by the largest tumors rather than the aggregate. In addition, systems with higher intermetastasis heterogeneity responded better to continuous therapy and correlated with dynamics from patients with high or low Gleason scores. Conversely, systems with higher intrametastasis heterogeneity responded better to adaptive therapy and correlated with dynamics from patients with intermediate Gleason scores. SIGNIFICANCE: Multiscale mathematical modeling combined with biomarker dynamics during adaptive therapy helps identify underlying features of metastatic cancer to inform treatment decisions.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Antagonistas de Androgênios/uso terapêutico , Biomarcadores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Resultado do Tratamento
8.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
9.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952376

RESUMO

Adaptive therapy is a dynamic cancer treatment protocol that updates (or 'adapts') treatment decisions in anticipation of evolving tumor dynamics. This broad term encompasses many possible dynamic treatment protocols of patient-specific dose modulation or dose timing. Adaptive therapy maintains high levels of tumor burden to benefit from the competitive suppression of treatment-sensitive subpopulations on treatment-resistant subpopulations. This evolution-based approach to cancer treatment has been integrated into several ongoing or planned clinical trials, including treatment of metastatic castrate resistant prostate cancer, ovarian cancer, and BRAF-mutant melanoma. In the previous few decades, experimental and clinical investigation of adaptive therapy has progressed synergistically with mathematical and computational modeling. In this work, we discuss 11 open questions in cancer adaptive therapy mathematical modeling. The questions are split into three sections: (1) integrating the appropriate components into mathematical models (2) design and validation of dosing protocols, and (3) challenges and opportunities in clinical translation.


Assuntos
Melanoma , Neoplasias da Próstata , Masculino , Humanos , Modelos Teóricos , Melanoma/terapia , Simulação por Computador , Matemática
10.
Trends Cell Biol ; 33(4): 300-311, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404257

RESUMO

In this opinion, we highlight agent-based modeling as a key tool for exploration of cell-cell and cell-environment interactions that drive cancer progression, therapeutic resistance, and metastasis. These biological phenomena are particularly suited to be captured at the cell-scale resolution possible only within agent-based or individual-based mathematical models. These modeling approaches complement experimental work (in vitro and in vivo systems) through parameterization and data extrapolation but also feed forward to drive new experiments that test model-generated predictions.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Neoplasias/patologia
11.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998218

RESUMO

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Assuntos
Evolução Clonal , Epiderme , Homeostase , Queratinócitos , Carcinogênese/genética , Evolução Clonal/genética , Epiderme/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética
12.
Patterns (N Y) ; 3(7): 100523, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35845830

RESUMO

Understanding the complex ecology of a tumor tissue and the spatiotemporal relationships between its cellular and microenvironment components is becoming a key component of translational research, especially in immuno-oncology. The generation and analysis of multiplexed images from patient samples is of paramount importance to facilitate this understanding. Here, we present Mistic, an open-source multiplexed image t-SNE viewer that enables the simultaneous viewing of multiple 2D images rendered using multiple layout options to provide an overall visual preview of the entire dataset. In particular, the positions of the images can be t-SNE or UMAP coordinates. This grouped view of all images allows an exploratory understanding of the specific expression pattern of a given biomarker or collection of biomarkers across all images, helps to identify images expressing a particular phenotype, and can help select images for subsequent downstream analysis. Currently, there is no freely available tool to generate such image t-SNEs.

13.
Patterns (N Y) ; 3(7): 100549, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35845839

RESUMO

Dr. Prabhakaran and Dr Gatenbee are research scientists in Anderson's lab and have developed Mistic, a publicly available tool that simultaneously views multiplexed images and assists in gaining biological and clinical insights into patients' data. They discuss the role of mathematical modeling in translational cancer research and clinical decision making and describe how mathematical modeling fits into the data science definition.

14.
Cancers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681680

RESUMO

The standard of care for cancer patients aims to eradicate the tumor by killing the maximum number of cancer cells using the maximum tolerated dose (MTD) of a drug. MTD causes significant toxicity and selects for resistant cells, eventually making the tumor refractory to treatment. Adaptive therapy aims to maximize time to progression (TTP), by maintaining sensitive cells to compete with resistant cells. We explored both dose modulation (DM) protocols and fixed dose (FD) interspersed with drug holiday protocols. In contrast to previous single drug protocols, we explored the determinants of success of two-drug adaptive therapy protocols, using an agent-based model. In almost all cases, DM protocols (but not FD protocols) increased TTP relative to MTD. DM protocols worked well when there was more competition, with a higher cost of resistance, greater cell turnover, and when crowded proliferating cells could replace their neighbors. The amount that the drug dose was changed, mattered less. The more sensitive the protocol was to tumor burden changes, the better. In general, protocols that used as little drug as possible, worked best. Preclinical experiments should test these predictions, especially dose modulation protocols, with the goal of generating successful clinical trials for greater cancer control.

15.
Commun Med (Lond) ; 2: 46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603284

RESUMO

Background: Adaptive therapy aims to tackle cancer drug resistance by leveraging resource competition between drug-sensitive and resistant cells. Here, we present a theoretical study of intra-tumoral competition during adaptive therapy, to investigate under which circumstances it will be superior to aggressive treatment. Methods: We develop and analyse a simple, 2-D, on-lattice, agent-based tumour model in which cells are classified as fully drug-sensitive or resistant. Subsequently, we compare this model to its corresponding non-spatial ordinary differential equation model, and fit it to longitudinal prostate-specific antigen data from 65 prostate cancer patients undergoing intermittent androgen deprivation therapy following biochemical recurrence. Results: Leveraging the individual-based nature of our model, we explicitly demonstrate competitive suppression of resistance during adaptive therapy, and examine how different factors, such as the initial resistance fraction or resistance costs, alter competition. This not only corroborates our theoretical understanding of adaptive therapy, but also reveals that competition of resistant cells with each other may play a more important role in adaptive therapy in solid tumours than was previously thought. To conclude, we present two case studies, which demonstrate the implications of our work for: (i) mathematical modelling of adaptive therapy, and (ii) the intra-tumoral dynamics in prostate cancer patients during intermittent androgen deprivation treatment, a precursor of adaptive therapy. Conclusion: Our work shows that the tumour's spatial architecture is an important factor in adaptive therapy and provides insights into how adaptive therapy leverages both inter- and intra-specific competition to control resistance.

16.
Nat Commun ; 13(1): 1798, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379804

RESUMO

The evolutionary dynamics of tumor initiation remain undetermined, and the interplay between neoplastic cells and the immune system is hypothesized to be critical in transformation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected. Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma using a computational model, ecological analysis of digital pathology data, and neoantigen prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells would be the most common driver of transformation. As predicted, ecological analysis reveals that progressed adenomas co-localized with immunosuppressive cells and cytokines, while benign adenomas co-localized with a mixed immune response. Carcinomas converge to a common immune "cold" ecology, relaxing selection against immunogenicity and high neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation. These findings suggest re-engineering the immunosuppressive niche may prove an effective immunotherapy in CRC.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Evolução Biológica , Neoplasias Colorretais/patologia , Humanos , Imunoterapia
17.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35298641

RESUMO

Research over the past two decades has made substantial inroads into our understanding of somatic mutations. Recently, these studies have focused on understanding their presence in homeostatic tissue. In parallel, agent-based mechanistic models have emerged as an important tool for understanding somatic mutation in tissue; yet no common methodology currently exists to provide base-pair resolution data for these models. Here, we present Gattaca as the first method for introducing and tracking somatic mutations at the base-pair resolution within agent-based models that typically lack nuclei. With nuclei that incorporate human reference genomes, mutational context, and sequence coverage/error information, Gattaca is able to realistically evolve sequence data, facilitating comparisons between in silico cell tissue modeling with experimental human somatic mutation data. This user-friendly method, incorporated into each in silico cell, allows us to fully capture somatic mutation spectra and evolution.


Assuntos
Genoma Humano , Neoplasias , Evolução Clonal , Humanos , Mutação , Neoplasias/genética
18.
Phys Biol ; 19(3)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35078159

RESUMO

The role of plasticity and epigenetics in shaping cancer evolution and response to therapy has taken center stage with recent technological advances including single cell sequencing. This roadmap article is focused on state-of-the-art mathematical and experimental approaches to interrogate plasticity in cancer, and addresses the following themes and questions: is there a formal overarching framework that encompasses both non-genetic plasticity and mutation-driven somatic evolution? How do we measure and model the role of the microenvironment in influencing/controlling non-genetic plasticity? How can we experimentally study non-genetic plasticity? Which mathematical techniques are required or best suited? What are the clinical and practical applications and implications of these concepts?


Assuntos
Epigênese Genética , Neoplasias , Epigenômica , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
19.
Nat Biotechnol ; 40(5): 720-730, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980912

RESUMO

Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).


Assuntos
Células-Tronco Adultas , Metilação de DNA , Adulto , Linhagem da Célula/genética , Colo/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Humanos , Células-Tronco
20.
PLoS Comput Biol ; 17(8): e1009348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460809

RESUMO

Intra-tumour heterogeneity is a leading cause of treatment failure and disease progression in cancer. While genetic mutations have long been accepted as a primary mechanism of generating this heterogeneity, the role of phenotypic plasticity is becoming increasingly apparent as a driver of intra-tumour heterogeneity. Consequently, understanding the role of this plasticity in treatment resistance and failure is a key component of improving cancer therapy. We develop a mathematical model of stochastic phenotype switching that tracks the evolution of drug-sensitive and drug-tolerant subpopulations to clarify the role of phenotype switching on population growth rates and tumour persistence. By including cytotoxic therapy in the model, we show that, depending on the strategy of the drug-tolerant subpopulation, stochastic phenotype switching can lead to either transient or permanent drug resistance. We study the role of phenotypic heterogeneity in a drug-resistant, genetically homogeneous population of non-small cell lung cancer cells to derive a rational treatment schedule that drives population extinction and avoids competitive release of the drug-tolerant sub-population. This model-informed therapeutic schedule results in increased treatment efficacy when compared against periodic therapy, and, most importantly, sustained tumour decay without the development of resistance.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Modelos Biológicos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...